TOWARDS A MOLECULAR-SIZE CONSTRUCTION SET: 3,3(n-1)-BISACETYLTHIO[n]STAFFANES Andrienne C. Friedli, Piotr Kaszynski, and Josef Michl* Center for Structure and Reactivity, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1167 Abstract: Synthesis and properties of a series of staffanes l[n], n=1-5, functionalized with an -SR group at both termini are reported. It has been proposed recently $^{1-3}$ that [n]staffanes $\mathbf{1[n]}$ (X = Y = H), oligomers of [1.1.1]propellane 4 2, represent nearly ideal building blocks for a molecular-size civil engineering set for the construction of various objects of Nanotechnology. 5 The preparation of [n]staffanes with a single terminal substituent (X \neq H, Y = H) by oligomerizing radical addition of 2 across X-H bonds, and the introduction of a second terminal substituent Y = COC1 by subsequent chlorocarbonylation, have already been described. 2 In order to obtain doubly functionalized telomers in a single step, we have examined the radical addition of 2 across the S-S, P-P, Si-Si, Sn-Sn, C-S, C-Hal, S-Hal, Si-Hal, P-Hal, Sn-Hal, Se-Hal, and Hal-Hal bonds of several dozen reagents. Only a few yielded the desired oligomers. The reagent of choice is diacetyldisulfide $(X = Y = SCOCH_3)$, which afforded the first five oligomers (1[n], n = 1-5). UV irradiation of $2^{6,7}$ and $(CH_3COS)_2$ in diethylether followed by distillation, crystallization, and gradient sublimation yielded analytically pure $3,3^{(n-1)}$ -bisacetylthio[n]staffanes (l[n], $X=Y=SCOCH_3$, n=1-5) in individual yields ranging from ~20% to less than 1%. They are thermally stable up to ~280°C; the trimer and higher oligomers form liquid crystals. X-10 X-ray structure determination (Figure 1) on two crystal modifications of X-11 X = Y SCOCH3) showed that the "syn" (dihedral angle, X-12 and "anti" (144° in one modification, 177° in the other) conformers have very similar structures, characterized by remarkably short interbridgehead C-C bonds (1.46–1.47 Å). The presence of short bonds was predicted and has also been found in [2] staffanes. $^{1-3}$, 10 It is readily understood from hybridization arguments. The [n] staffane length increment from n to n+1 is 3.35 Å. Figure 1. X-ray structure of the "syn" conformer of 3,3"-bisacetylthio[3]staffane The $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR chemical shifts follow a simple pattern (Figure 2) which can be described by use of additive increments. 3 Figure 2. 1 H and 13 C NMR shifts in $_{3,3}$ (n-1)-bisacetyl-thio[n]staffanes (1[n], X = Y = SCOCH₃) The bisacetylthio[n]staffanes are readily hydrolyzed to dithiolates, and these can be transformed further with trivial ease: The termini have also been differentiated by partial hydrolysis and subsequent substitution: This synthetic versatility of the bisacetylthio[n]staffanes is important for their intended use in a molecular "Tinkertoy" 11 construction set. We find that dipivaloyldisulfide does not add to 2 under these conditions, nor does di-t-butyldisulfide, but simpler dialkyldisulfides and diaryldisulfides do, although they do not always yield oligomers. In a private communication, Prof. Szeimies (Munich) has informed us that several dialkyl and diaryldisulfides were added to 2 in his laboratory, and several resulting oligomers up to n = 3 were isolated. 10 Acknowledgement. Vincent M. Lynch did the crystallographic work. The project has been supported by the National Science Foundation, the Robert A. Welch Foundation, and the Texas Advanced Research Program. ## References - Kaszynski, P.; Friedli, A. C.; Michl, J., The Third Chemical Congress of the North American Continent, Toronto, Ontario, Canada, June 4-10, 1988, Book of Abstracts, ORG N 218.. - Kaszynski, P.; Michl, J. J. Am. Chem. Soc. 1988, 110, 5225. - 3. Michl, J.; Kaszynski, P.; Friedli, A. C., Murthy, G. S.; Yang, H.-C.; Robinson, R. E.; McMurdie, N. D.; Kim, T., Proceedings of the NATO Advanced Research Workshop "Strain and Its Implications in Organic Chemistry," Ratzeburg, Germany, August 1988, D. Reidel Publishing Co., in press. - 4. Wiberg, K. B.; Walker, F. M. J. Am. Chem. Soc. 1982, 104, 5239. - 5. Hameroff, S. R. in *Ultimate Computing*. Biomolecular Consciousness and NanoTechnology; North Holland, Amsterdam, 1987, Chapter 10. - 6. Semmler, K.; Szeimies, G.; Belzner, J. J. Am. Chem. Soc. 1985, 107, 6410. - 7. Kaszynski, P.; Michl, J. J. Org. Chem. 1988, 53, 4593. - 8. Kaszynski, P.; Friedli, A.C.; Michl, J. Mol. Cryst. Liq. Cryst. Lett. 1988, 6, 27. - 9. Ermer, O.; Lex, J. Angew. Chem., Int. Ed. Engl. 1987, 26, 447. - 10. Bunz, U.; Polborn, K.; Wagner, H.-U.; Szeimies, G., preprint (1988). - 11. Tinkertoy is a trademark of Playskool, Inc., and designates a children's toy construction set consisting of straight beams and connectors. (Received in USA 5 October 1988)